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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1987, VOL. 6, No. 4, 367-384 

Hartree-Fock ab initio approaches to the solution of 
some solid-state problems: state of the art and prospects 

by CESARE PISANI 
Institute of Theoretical Chemistry, University of Turin, 

via Giuria 5, 1-10125 Turin, Italy 

The state of the art of Hartree-Fock (HF) computational schemes for use in 
solid-state physics is reviewed. Particular attention is devoted to the perfect crystal 
problem: the fundamental techniques are discussed, and the computational 
difficulties are presented. It is shown that present-day HF schemes compare 
favourably with those based on density functional theories in a number of instances; 
in particular, in the determination of the one-electron properties of covalent and 
ionic crystals which do not contain heavy atoms, and in the chemical and structural 
characterization of their surfaces. However, in order to find extensive application in 
solid-state physics, HF  schemes need further development: the possible 
implementation of pseudopotential techniques, correlation corrections, and 
embedding schemes is discussed. 

1. Introduction 
There are a number of problems in solid-state physics where an accurate ab initio 

description of the ground state of the system and its properties are of primary 
importance. 

The ground-state energy E ,  is usually the most interesting parameter. For perfect 
crystals, equilibrium geometry, elastic properties, relative stabilities of different crystal 
phases, etc. can be obtained from the knowledge of E ,  as a function of the coordinates 
of nuclei. More generally, E ,  may provide information about the surface energy of 
different crystal faces, about their relaxation or reconstruction, about the 
chemisorption heat and equilibrium configuration of adsorbed molecules, about the 
formation energy of different defects in otherwise perfect crystals. This information is 
valuable in the areas of material science and catalysis, especially in situations where 
experimental data are difficult to collect or have ambiguous interpretation. Ground- 
state electron properties such as electron charge and electron momentum distribution 
may clarify the nature of bonding in crystals. Semiempirical schemes may be 
parameterized with reference to those ‘exact’ results, and may then be used with some 
confidence for treating a number of systems which are beyond the reach of ab initio 
treatments. 

Among the techniques that are currently available for the solution of the many- 
electron problem, the Hartree-Fock (HF) approach in its linearized Roothaan version 
appears in principle well suited for these kinds of problems, since it provides the single- 
determinant wavefunction with the lowest expectation value for energy within the 
functional space spanned by the adopted basis set. Decades of application of the HF 
approximation to molecular problems have resulted in the generation of extremely 
refined, relatively standard computer programs such as, for example, GAUSSIAN 82 
(Binkley et al. 1981). A few well calibrated basis functions per involved atom are 
adopted, usually designed as atomic orbitals (AO), which are defined as a linear 
combination of a certain number of Gaussian type orbitals (GTO); well assessed 
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368 C. Pisani 

strategies are available for selecting the optimal set as allowed by computational 
constraints (Davidson and Feller 1986); powerful algorithms have been developed for 
computing and handling all required one- and two-electron integrals (McMurchie and 
Davidson 1978). The correlation of electron motions is not taken into account in the 
H F  approximation. A variety of techniques have been developed in the field of 
molecular studies for removing the ‘correlation error’ (Wilson 1984); for most of them, 
the calculation of the H F  solution is a useful, if not necessary, step. The uncorrelated 
HF  wavefunction is by itselfa source of valuable information about molecular systems 
in their ground state. Equilibrium geometries, barriers to internal rotations, electron 
charge and momentum distributions are usually described with satisfactory accuracy. 

For all these reasons, there has been in the past two decades strong stimulus to 
extending the use of the HF approximation to the investigation of the ground-state 
properties of solid systems. Molecular quantum chemistry programs have often been 
used for this purpose, especially in the study of defects, surfaces, and surface chemistry 
(see for instance Bauschlicher et al. (1  9 7 3  Hermann and Bagus (1 978), Colbourn and 
Mackrodt (1982), and Simonetta (1986)). In such calculations a small cluster of atoms 
from the solid is considered, whose configuration reproduces locally the crystal 
geometry; the rest of the system is often totally ignored, or simulated by saturating 
dangling bonds with hydrogen atoms or similar devices. Since the problem is reduced 
to a molecular one, sophisticated techniques can be applied for calculating correlation 
corrections (Beckmann and Koutecky 1982). The cluster technique has achieved some 
successes in describing local electronic features in solids. However, one cannot go very 
far this way: eliminating boundary and limited-size effects by simply increasing the 
number of atoms in the cluster is clearly a hopeless task. 

The problem is simplified in an essential way in the case of perfect crystals, because 
advantage can be taken of translational symmetry. One first chooses a number of 
representative AOs X,(r) ( p  = I , .  . . , p)  associated with the atoms in the reference cell; by 
applying to each of them the projection operator P(k) (the continuous label k specifies 
the general irreducible representation of the group of the crystal translations), Bloch 
functions (BF) 4p(k;r) are generated. In the BF representation the Fock matrix F 
becomes block-diagonal, the order of each block along the diagonal, F(k), being p .  The 
task of calculating the crystalline orbitals (CO) Yi(k), eigenfunctions of the Fock 
equations, is reduced to the simple problem of diagonalizing the ‘small’ matrices F(k). 
The main difficulties that are left in the calculation are evaluating the matrix elements 
F,,(k), and sampling and interpolating with respect to the continuous k parameter. 

Having at hand the H F  solution for the translationally periodic system makes it 
possible, on the one hand, to exploit the related information for studying local defects in 
otherwise perfect crystals by means of suitable embedding techniques (see for instance 
Pisani (1986)) and on the other hand, to introduce corrective algorithms for removing 
or estimating the correlation error, especially concerning the ground-state energy E,. 

A realistic and attractive line of research can be formulated following these 
considerations. A crucial step for its realization is the implementation of a general 
purpose H F  program for perfect crystals, characterized by a number of desirable 
features: 

(a) it should resemble molecular programs in so far as functional form of the AOs 
and basic algorithms are concerned efficient criteria for basis set selection, 
powerful numerical techniques, and useful interpretative schemes developed in 
the field of molecular quantum chemistry could then be utilized; 
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Hartree-Fock approach to solid-state problems 369 

it should allow the treatment of systems with one-, two-, or three-dimensional 
periodicity, and should not introduce too strict limitations as regards the 
complexity of the unit cell (up to ten atoms, say, should be allowed) and the 
nature of the atoms involved: the versatility of the program critically depends 
on the fulfjlment of all these conditions; 
it should be sophisticated enough to exploit all possible means for reducing the 
computational effort, in particular by taking advantage of point symmetry; yet, 
its use should be easy, both concerning the definition of the system to be treated 
and of the computational parameters to be adopted, and the extraction of the 
relevant information from the results of the calculation. 

In the past two decades there have been many attempts to achieve those aims. Section 2 
gives a short account of the various H F  approaches that have been proposed for the 
study of crystals, and of the main problems that have been encountered. In spite of the 
relevant successes that have occasionally been obtained, most of these efforts have not 
resulted in standard computational schemes. The main reason for that is probably the 
fact that in solid-state physics there exist highly efficient alternative routes for the 
solution of the many-electron problem. Section 3 briefly describes the state of the art in 
the field, with special attention given to those ab initio schemes that refer to density- 
functional (DF) theories. In their most sophisticated version, these approaches can 
provide detailed and reliable information on the ground-state properties of crystals. In 
spite of that, the H F  ‘chemical’ approach to the study of solids remains an important 
option to be carefully explored, especially because its theoretical foundations are 
sounder and better understood than is the case with DF theories; however, in order to 
compete at a level of parity’with well established D F  theories, H F  schemes must come 
close to meeting those requirements that have been listed above. Section 4 presents 
some aspects of the program CRYSTAL developed in this laboratory, which is at 
present the best tested HF program for periodic systems. With the help of some 
examples, current possibilities and critical aspects of this kind of approach are 
documented. Finally, Section 5 tries to delineate some directions of work in this area of 
research in the near future. 

2. HF approaches to the study of perfect crystals 
There is no unique way to formulate and to solve the HF-Roothaan equations for 

crystals. They are reduced to a trivial problem when a minimal set of generating AOs is 
adopted to describe approximately closed-shell atoms or ’ions in the crystal 
environment, that is, when the number of spin orbitals that can be constructed equals 
the number of electrons that must be accommodated. In this case no variational 
freedom may be left for the definition of the Slater determinant which approximates the 
ground-state wavefunction; the one-electron density matrix is simply the inverse 
overlap matrix and the ground-state one-electron properties and energy are hence 
obtained in a straightforward way. Such an approach is particularly useful with ionic 
systems, where several schemes have been used for choosing a suitable minimal set 
(Lundqvist 1954, Paakkari et al. 1976, Grosso and Pastori Parravicini 1979). In 
principle this method is exact for insulators if the generating AOs closely resemble the 
crystal’s Wannier functions (see Callaway (1974), pp. 375-382). An elaborate procedure 
for determining the optimized minimal set while maintaining the localized character of 
the basis functions has been proposed and tested by Kunz with a number of ionic 
systems (Kunz 1970, Mickish et al. 1974a, Pantelides et al. 1974, Kunz and Mickish 
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3 70 C. Pisani 

1975). Similar methods have been applied to other kinds of system, even metallic ones 
such as calcium (Mickish et al. 1974 b) or beryllium (Ludeiia 1978), where the procedure 
is certainly less justified. 

In general, however, one must allow for more or less large variational freedom and 
there is the need to define the manifold of the occupied COs according to a self- 
consistent procedure. The sequence of computational steps to be undertaken is as 
follows: 

(a) Define the geometry, the nature of atoms, and the basis set. 
(b) Evaluate and store auxiliary integrals. 
(c) Define a trial density matrix P,. 

(Begin loop over a selected set of ki values. 
(d)  Calculate the Fock matrix F(kJ in the BF representation. 
(e) Find eigenvalues E(ki) and eigenvectors A(ki) of the orthogonalized Fock 

matrix. 
End loop over ki.) 

(f) Calculate the new P, matrix by an interpolation-integration process from the 
knowledge of the sampled values E(k), A(k). 

(9) Check for convergence by comparing P, with P,-l; if not reached, repeat all 
steps following step (c). 

The step which more deeply characterizes a given computational scheme is probably 
step ( d )  above. For the evaluation of the general Fock matrix element F,,(k), one must 
consider three contributions: the kinetic term, which is relatively Straightforward, the 
Coulomb term, corresponding to the electrostatic interaction between the charge 
distribution 4 f ( k ;  r) 4Y(k; r) and all the charges in the crystal, both nuclear and 
electronic, and the exchange term, corresponding to a non-local operator typical of the 
HF approximation, which corrects the Coulomb term by accounting for the Fermi 
repulsion between electrons with the same spin. For performing these calculations, 
either a ‘configuration space’ (CS) or a ‘momentum space’ (MS) approach may be 
adopted. 

In the former case, which is certainly the more popular, all integrals are performed 
in direct space and the Fock matrix is Fourier transformed to reciprocal space just 
before,diagonalization. The explicit reformulation of the HF-Roothaan equations in a 
basis set of BFs and adopting a CS approach is due to Del Re et al. (1967), and to Andri. 
et al. (1967). The Coulomb and exchange terms are expressed as a triple summation 
over all the crystal cells, and the problem arises of truncating these infinite series in an 
efficient way (see section 4 for more details). A very large number of one- and two- 
electron integrals are to be calculated involving AOs on different crystal cells: they can 
be evaluated and stored once and for all in a preliminary step of the calculation (step (b) 
of the scheme above). 

If an MS approach is adopted, the Fock matrix is calculated analytically in 
reciprocal space after expressing both BFs and Coulomb and exchange operators as a 
combination of plane waves (see for example Harris and Monkhorst (1970), Stoll and 
Preuss (1975), Brener and Fry (1978), and Delhalle and Harris (1985)). In spite of the 
elegance of the MS approach, it has had only very limited application. It has been 
claimed (Delhalle and Harris 1985) that MS approaches are superior in principle to CS 
ones because the quantity of information to be stored for use in the self-consistent stage 
of the computation is much larger in the latter case. However, it can be shown that an 
adequate treatment of the problem can reduce all storage requirements to much more 
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manageable proportions than would appear necessary at first sight. Furthermore, with 
CS approaches, it is much easier to embody in the computational scheme powerful 
numerical techniques developed in molecular quantum chemistry. 

The progress towards the implementation of such self-consistent H F  schemes has 
been quite rapid in the case of ideal polymers, that is of one-dimensional periodic 
systems (see the review by KertCsz (1983) for a detailed account of techniques and 
results), where the problem is somewhat similar to the molecular one. Powerful 
computer programs and accurate H F  solutions for a number of polymers are available, 
mainly due to extensive work by several research groups (Kerttsz et al. 1977, Brtdas 
et al. 1978, Andrh 1980, Suhai 1980, Karpfen 1981, 1982). 

With three-dimensional systems the problem is much more delicate. First of all, the 
truncation of the Coulomb and exchange series cannot be based only on a criterion of 
distance between the centres of the AOs, because the number of integrals increases very 
rapidly with the truncation radius while the value of the individual terms is decreasing 
only with the inverse radius. Second, the full exploitation of point symmetry is here 
both more important and more difficult to achieve. Third, for calculating the Fermi 
energy in metallic systems, and more generally for reconstructing the Fock matrix at 
different k points, sophisticated interpolation-integration techniques must be adopted 
for three-dimensional structures, while the problem is trivial in one dimension. 

The first successful attempt to solve directly the HF-Roothaan equations for three- 
dimensional systems in a CS approach, by coping with all the fundamental difficulties 
mentioned above, is due to the research group of the Aerospace Research Laboratories, 
Dayton, Ohio. They used a set of contracted lobe Gaussian functions and employed 
sophisticated techniques including full exploitation of crystal symmetry for reducing to 
a minimum the number of integrals to be computed. Their studies of diamond 
(Euwema et al. 1973, Surratt et al. 1973, Wepfer et al. 1974, Euwema and Greene 1975), 
cubic boron nitride (Euwema et al. 1974 a), lithium fluoride (Euwema et al. 1974 b) have 
remained for many years an unsurpassed standard in the field of HF studies of crystals. 
The energy bands of diamond and LiF have subsequently been corrected by Brener 
(1975 a, b) by approximately taking into account correlation effects. 

A number of research groups have undertaken in recent years similar attempts. 
Stoll and Preuss (1973, 1975) have applied their MS scheme based on the use of 
modulated periodic functions (a sum of AOs over the crystal cells multiplied by a 
modulating plane wave) to the study of lithium and beryllium. Harris, Monkhorst and 
co-workers (Harris and Monkhorst 1969,1970, Harris et al. 1973, Graovac et al. 1975, 
Ramaker et al. 1975, Monkhorst et al. 1979, Pack et al. 1979) have produced 
fundamental work, primarily methodological in character (the only application 
concerns metallic hydrogen and lithium), intended to explore and discuss the 
theoretical and computational aspects of the MS approach to the HF  problem for 
crystals. A different MS scheme has been applied by Mauger and Lannoo (1977) to the 
study of diamond. In the same years, Brener and Fry (Fry et al. 1977, Brener and Fry 
1978) developed powerful algorithms for the treatment of the exchange series in a MS 
formalism. Upton and Goddard (1980) have developed a CS scheme with special 
attention to the treatment of Coulomb sums and tested it with metallic hydrogen, 
lithium and sodium. Von der Linden et al. (1986) have proposed a technique for 
eliminating the exchange problem in the self consistent part of the calculation by using 
the COs from a local-density-functional treatment of the problem for calculating the 
nonlocal H F  exchange potential; preliminary applications concern diamond and 
silicon. 
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372 C. Pisani 

The scheme to be presented in some detail in section 4 has been developed at the 
Institute of Theoretical Chemistry of the University of Turin, and by Saunders, of the 
Daresbury Laboratories (Pisani and Dovesi 1980, Dovesi et al. 1983 a, Dovesi 1986, 
Causd et al. 1987 a). In comparison with those mentioned above, this scheme does not 
present essential methodological differences and is near in spirit and methods to 
Euwema’s approach. However, the corresponding computer program, which has been 
named CRYSTAL, is the only one that has been systematically improved over nearly 
ten years, and has been tested with a large variety of systems: the graphite monolayer, 
both bare (Dovesi et al. 1980a) and covered with chemisorbed hydrogen (Dovesi et al. 
1981 a); diamond (Dovesi et al. 1980 b); silicon (Dovesi et al. 1981 b, Angonoa et al. 
1981); hexagonal and cubic boron nitride (Dovesi et al. 1981 c); aluminum (Causa et al. 
1981); beryllium (Dovesi et al. 1982 a, b, c); beryllium slabs, both bare (Angonoa et al. 
1982) and covered with chemisorbed hydrogen (Angonoa et al. 1984 a); lithium (Dovesi 
et al. 1983 b); polyacetylenes (Dovesi 1984); polysulphur nitride (Dovesi et al. 1984 a); 
lithium hydride (Dovesi et al. 1984 b); lithium nitride (Dovesi et al. 1984 c, Causa et al. 
1985); lithium oxide (Dovesi 1985); magnesium oxide (Causa et al. 1986 a, b, c); the (100) 
surface of magnesium oxide (Causa et al. 1986 d). The list includes non-conductors and 
semiconductors, metals, ionic systems, two-dimensional structures (layered 
compounds, crystal surfaces bare or covered with adlayers), and polymers. 

3. The alternative choice: ab initio density functional calculations 
In spite of all these efforts, HF approaches have not yet gained great relevance in 

solid-state physics. The overwhelming majority of the calculations aimed at describing 
the electronic structure of periodic systems is currently performed using DF  theories. 
There are both fundamental and historical reasons for that. It has been standard 
practice for a long time to investigate the electronic properties of solids (in particular 
their response properties) by employing semi-empirical one-electron hamiltonians, 
suitably parametrized for any given specific problem. The D F  theory (Hohenberg and 
Kohn 1964, Kohn and Sham 1965) has provided firm ground for formulating an 
effective potential w(r) to be added to the kinetic operator and to the Coulomb 
potential: in principle w(r) is a universal functional of the electron charge density p(r‘) 
such that the COs that are calculated with its use following a self-consistent procedure 
generate the true charge density of the system in its ground state, po(r’); in turn, all 
observable ground-state quantities (in particular E,)  are functionals of po. Explicit 
formulae can be obtained for all the functionals in the limit of nearly uniform charge 
density, starting from the properties of the uniform electron gas. This form of the theory 
corresponds to the ‘local approximation’; in this case, the effective potential w at a 
specific point r depends only on the density at that point. 

This theory has had enormous fortune in solid-state physics, much less so in 
molecular quantum chemistry (Dahl and Avery 1984). The local effective potential 
includes both exchange and correlation effects, and is easily fitted into traditional 
computational schemes of solid-state physics; with the constant progress in numerical 
techniques, and with the parallel definition of better and better effective potentials, 
these schemes have now assumed a first-principles (ab initio) parameter-free form. 
Techniques originated from the electron-gas model, such as the muffin-tin augmented- 
plane-wave scheme, are now extended to include any shape of the periodic potential in 
the crystal (Andersen 1975, Wimmer et al. 1981, Blaha et al. 1985). In turn, the tight- 
binding approximation has been improved by increasing the number of AOs used as a 
basis set, and by progressively removing all empirical parameters from the theory 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Hartree-Fock approach to solid-state problems 373 

(Heaton and Lafon 1978, Vanderbilt and Louie 1984). Very often, the calculation is 
restricted to valence electrons by adopting a frozen-core approximation; suitable 
pseudopotentials are then added to account for core electron charge and to prevent 
valence electrons from occupying core states. This choice is nearly mandatory when 
plane waves (PW) are adopted as a basis set, because an enormous number of PWs 
would be required for describing the sharp features associated with core electrons. As 
an example of such an approach, let us consider the PW soft-core-pseudopotential 
local-DF MS scheme of Cohen and co-workers (Cohen 1981, Yin and Cohen 1982); it is 
at the same time one of the most successful ab initio schemes that are current in solid- 
state physics, and one that is most different from an LCAO all-electron H F  CS 
approach to the problem of solids. PWs form a universal, orthonormal set, with the 
correct asymptotic behaviour; with them, a MS approach is the natural choice: all 
matrix elements of the hamiltonian are calculated in a straightforward way after 
performing a Fourier transform of the valence charge density, of the exchange- 
correlation effective potential, and of the core pseudopotential (Yin and Cohen 1982). 
The scheme has been applied to a number of systems including metals (Chou et al. 
1983), semiconductors (Chang and Cohen 1985), ionic systems (Chang and Cohen 
1984), and two-dimensional structures treated with the multislab technique (Northrup 
and Cohen 1984). This extremely general procedure may meet difficulties when systems 
are treated whose elementary cell contains many atoms and/or regions of very low 
electron density, since the number of PWs required to describe valence electrons might 
then become very large. 

The existence of such powerful, sophisticated and versatile schemes, able to provide 
detailed and reliable information on the ground-state properties of a large variety of 
crystalline systems, makes it difficult for cumbersome H F  schemes, intrinsically 
affected by the correlation error, to find popularity among solid-state physicists. On the 
other hand, local density approaches cannot be improved indefinitely without a deep 
revision of their fundamental assumptions and related algorithms. The inadequacies of 
local density approximations, essentially due to the different nodal structures of the 
different orbitals, have been discussed by Gunnarsson and Jones (1985). According to 
their discussion it would not seem easy to overcome these problems by simple non- 
local modifications of local D F  theories. As they state it: ‘the problem represents a 
challenge for both solid state and molecular physicists’. Among the recent attempts to 
improve upon existing local DF theories, the schemes developed by Langreth, Mehl 
and Perdew can be mentioned (Langreth and Perdew 1980, Langreth and Mehl 1983, 
1984, Perdew and Yue 1986, Perdew 1986), based on a description of exchange and 
correlation in reciprocal space. The H F  hamiltonian does not suffer from these kinds of 
problem ‘because the corresponding single-determinantal wavefunction is a clearly 
defined quantity that takes into account the different nodal structures of the different 
orbitals through its nonlocal exchange term. 

4. Present capabilities and open problems of HF computational schemes 
A schematic account of the general characteristics, capabilities, and open problems 

of the H F  CRYSTAL program (see section 2) may clarify the present position of H F  
approaches with respect to D F  ones. 

4.1. Basis set problems 
The problem of selecting appropriate basis functions for H F  calculations of crystals 

has many features in common with the corresponding one for molecules; yet, some 
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3 14 C. Pisani 

aspects are markedly different. Diffuse Gaussian orbitals (exponent coefficient of the 
order of 0.2a.u. or less), play a critical role in H F  CS calculations of crystals. The 
number of integrals to be explicitly calculated increases dramatically with decreasing 
.exponent; this effect is Absent in molecular calculations. Furthermore, with decreasing 
exponent, the risks of pseudo-linear dependence increase rapidly; in practice, it is 
sometimes impossible to reach a variationally optimized basis set before a numerical 
catastrophe occurs (see for example Dovesi et al. (1983 b)). On the other hand, very 
diffuse AOs are less important in three-dimensional densely packed crystals than in 
atoms and molecules, where they serve to describe the tails of the electronic distribution 
towards vacuum (Euwema et al. 1973); the need for diffuse functions is clearly of greater 
importance in calculations of two-dimensional structures and of polymers. For these 
reasons, the selection of appropriate basis sets must be performed following specific 
rules for each crystal structure. Accurate basis sets for the treatment of a number of 
atomic or ionic species in their ordinary crystalline environments (Lif, Be, Mg'+, N3-, 
0'-) are provided in the series of papers by Dovesi et al. and Causa et al. quoted in 
section 2, but much work is still required before a rich library of reference basis sets for 
HF  computations of solids are available. When crystals with many atoms per unit cell 
are to be treated, relatively poor basis sets must be used, such as the STO-3G sets 
proposed by Pople and co-workers for HF  molecular calculations (Hehre et al. 1969, 
1970, Pietro et al. 1980,1981). In such cases, problems may arise when an estimate of the 
HF binding energy is desired, which is obtained by subtracting the total crystal energy 
per molecular unit from the sum of the HF  energies of the isolated atoms. The latter 
should be calculated at the same level of accuracy. Using, however, the same AOs for 
the isolated atoms as in the crystal leads to an overestimation of the HF binding energy, 
since the variational freedom is actually larger in the crystal because valence orbitals 
are shared by a large number of neighbouring atoms. This is known in quantum 
chemistry as basis set superposition error. In order to correct it, the counterpoise 
method (Boys and Bernardi 1970) may be used: the reference atomic energy is obtained 
using all AOs of that atom supplemented by the valence AOs of the surrounding atoms. 

4.2. Treatment of Coulomb interactions 
For the evaluation of the Coulomb contributions to the total energy and Fock 

matrix in crystals, proper coupling of electron-nucleus and electron-electron 
interactions is essential. For this purpose, the technique proposed by Dovesi et al. 
(1983 a) may be adopted. It may be described as follows, with reference to the general 
element F,, of the Fock matrix in direct space. The Coulomb contribution FY2 to that 
element is the electrostatic interaction of the charge distribution PI'(') (corresponding 
to the product Xl(r) Xz(r) of two AOs of which the former is in the zero reference cell) 
with all electrons and nuclei in the crystal. One first classifies all shells A of AOs on all 
atoms in the crystal in two categories, A' and 1", according to whether they overlap 
appreciably or not with plz. For the relatively few 1' shells, the Coulomb interaction is 
calculated exactly. For all the others, it is calculated approximately after adding the 
corresponding nuclear charges (which exactly compensate electron charges in each 
crystal cell), by considering a truncated multipole expansion and adopting Ewald 
techniques for summing to infinity. The exact part of the Coulomb contribution: 
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Hartree-Fock approach to solid-state problems 315 

requires in principle the evaluation of an infinite number of bielectronic integrals; 
however, only those are actually calculated for which the absolute value of the overlap 
of x1 with x2 and of x3 with x4 is above a certain threshold Sc. 

4.3, Treatment of exchange interactions 
The exchange series does not require special manipulations of the kind discussed 

above for the Coulomb series; rather, a careful selection of terms that appreciably 
contribute to the Fock matrix and to the total energy is needed. In a CS HF approach 
the general exchange contribution to total energy is of the form: 

- (~/4)~,2~3,(XIX3IX2X4) 
The simplest truncation criterion that can be adopted is based on two parameters: Sex, a 
threshold for the overlap between the AOs x1 and x3 or between x 2  and x4, and Rex, 
'range of the density matrix' corresponding to a cutoff distance between the centres of 
AOs x1 and x 2 ,  or x3 and x4. A detailed study of the speed of convergence of the series 
with respect to these parameters (CausB et al. 1987a) has led to the following 
conclusions. A value of Sex of about 10- is normally sufficient for a numerical accuracy 
of 0.001 eV in total energy; lowering s'" rapidly increases the accuracy, but also the 
number of required integrals. Convergence with respect to Rex is much slower if small 
gap semiconductors or conductors are considered. If very accurate energy evaluations 
are needed the number of exchange integrals may become huge (hundreds of millions, 
say). If a moderate accuracy in total energy (003 eV/cell) is deemed sufficient, relatively 
small values of Rex can be adopted, for example 4, 5, and 6 A  for MgO, silicon and 
aluminum, respectively; the latter calculation corresponds to about 6 million exchange 
integrals with a minimal basis set. When more accurate calculations are required, the 
large majority of exchange integrals concerns the interaction between charge 
distributions x1x3 and x2x4 which are far apart from each other and may be calculated 
accurately and economically using a multipolar expansion of the two distributions. 

4.4. Sampling and integration in reciprocal space 
The integration of k-dependent quantities is an important aspect of ab initio 

calculations for crystals. The problem arises at each stage of the self consistent 
procedure, when determining the Fermi energy and reconstructing the one-electron 
density matrix, and, after self consistency is reached, when calculating the density of 
states (DOS) and a number of observable quantities. Since the cost of evaluating the 
integrand at any given k point is usually high, it is important to maximize the 
exploitation of available information. This problem has no counterpart in ordinary 
molecular quantum chemistry where eigenvalues and eigenvectors corresponding to 
occupied molecular orbitals form a finite manifold, and it is possible to sum over all of 
them. Among the large variety of schemes that can be adopted (see for instance Boon 
et al. (1986)), the one adopted in CRYSTAL (Augonoa et al. 1984 b) is based on a 
truncated expansion in Legendre polynomials of the density of states as a function of 
energy; the coefficients of the expansion are estimated from the knowledge of the 
solution at a certain number N k  of properly selected k points, inequivalent by 
symmetry; all subsequent integrations are performed analytically. The whole 
procedure is extremely rapid. Its precision depends on the number N k  of sampling k 
points; in turn, the cost of the self-consistent part of the computation is proportional to 
N,. The density of sampling points in k space must be much higher for conductors 
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376 C. Pisani 

(where there is the problem of an accurate determination of the Fermi surface). Typical 
values of N k  are 145 for metallic lithium, and 8 for magnesium oxide for comparable 
accuracy. 

4.5. Exploitation of point symmetry 
In all periodic calculations, point symmetry is exploited for reducing the number Nk 

of points in which the matrix equations are to be solved; in addition, a very extensive 
use of point symmetry is possible in HF LCAO SC schemes. In this case, 2-electron and 
1-electron integrals are evaluated once and for all at the beginning of the calculation, 
and then used at each cycle of the self consistent procedure. The problem of the 
‘calculation and manipulation of horrendous numbers of many center integrals’ 
(Monkhorst 1979) can be drastically simplified by the use of point symmetry: saving 
factors as large as h and h2 (h is the order of the point group) can be obtained in the 
number of 2-electrons integrals to be computed and stored for the SCF part of the 
calculation, respectively. The main steps of the scheme that can be adopted (Dovesi 
1986) for obtaining this result can be summarized as follows: 

(i) The set of Coulomb and exchange integrals whose 3,4 indices identify 
translationally equivalent pairs of AOs, so that the associated element of the 
density matrix P, ,  is the same, are summed together just after they have been 
computed, to give D,,,, elements whose 1 and 3 indices are in the reference 
cell. 

(ii) The products of AOs xlx2 (and x3x4) are classified in symmetry-related sets; 
using the fact that the Fock matrix is totally symmetric, only those D 
quantities are evaluated whose first indices 1,2 refer to the first member of a 
symmetry set. The corresponding saving factor in CPU time and storage can 
be as large as h. 

(iii) Using the symmetry properties of the density matrix, D quantities referring to 
3,4 couples belonging to the same symmetry set (and with the same 1,2 index) 
can be combined after multiplication by appropriate symmetry matrices, so 
that a single quantity for each 3,4 symmetry set is to be stored, with a further 
saving factor in storage of the order of h. 

Similar arguments apply to the other integrals appearing in the Fock matrix and in the 
energy expression. 

’ 

4.6. Examples of application 
The table provides examples of ‘extreme’ and ‘normal’ applications of the 

CRYSTAL program. 
The diamond calculation has been performed while trying to get as close as possible 

to the HF  limit for subsequent application of correlation corrections (see the next 
section); the basis set quality and the numerical accuracy have therefore been carried to 
the maximum allowed refinement. The number of two-electron integrals that need be 
calculated is enormous because of the computational conditions; on the other hand, use 
of the rich point symmetry reduces to manageable proportions the number N’ of 
symmetrized D sums to be stored (the overall saving factor is about 80). The computer 
time required for the self consistent calculation is negligible with respect to integral 
evaluation. 

The polysulphur nitride calculation refers to current work intended to explore the 
importance of interchain interactions in crystalline conducting polymers. According to 
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Examples of application of the CRYSTAL program. The meaning of Sc, Sex and Rex is explained 
in the text. NC, N'" and N are the number of two-electron Coulomb and exchange 
integrals, and of symmetrized D sums, respectively. The computation times refer to a 
Hitachi M200 scalar computer. 

Diamond 3 -d (SN), MgO 

Order of point group 
Number of atoms per cell 
Basis set 

Number of AOs per cell 
Computational parameters 

S"" = p 
Rex (A)  
Order of multipoles 

Part I (evaluation of integrals) 
Calculation data 

Number of integrals (millions) 
N" 
N'" 
N' 
Computing time (s) 

Part I1 (self consistent stage) 
~ N, (sampling k points) 

Number of SCF cycles 
Computing time (s) 

48 
2 

Optimized 
double-zeta 

+ d  AOs 
30 

10-6 
6.9 
4 

160 
150 

4 
5500 

29 
14 

200 

~~ 

4 
8 

STO-3G + d 
AOs on 
sulphur 

76 

1 0 - 5  
5.8 
4 

14 
19 
12 

1200 

12 
9 

600 

~ _ _  

48 
2 

Optimized 
split-valence 

18 

10-4 
5.8 
4 

7 
5 
0.2 

250 

8 
10 
20 

present standards it is again an extreme calculation, but in a different sense with respect 
to the preceding one: there are many atoms in the unit cell, some of them are second- 
row ones, the point symmetry is poor. A minimal STO-3G set has been employed, 
supplemented by d-type AOs on sulphur for describing important hypervalent aspects 
of the chemical bonds. In spite of the use of few sampling k points, the self consistent 
stage takes an appreciable fraction of overall computer time because of the large order 
(76), of the F(k) matrices. 

Magnesium oxide corresponds to a 'normal' calculation of good quality (Causa 
et al. 1986 a). An optimized split-valence set is used which gives a total energy near the 
H F  limit; however, the number of two-electron integrals is not very large because the 
AOs are relatively short-ranged. Furthermore, because of the rich point symmetry, 
there are only 200 000 symmetrized D sums to be stored and manipulated. The whole 
calculation takes only 5 min on a scalar computer. 

4.7. Concluding remarks 
After reaching self-consistency, a number of important quantities apart from E ,  

may be obtained from the H F  wavefunction. The foIlowing ones are available as a 
standard option of the CRYSTAL program: 

(a)  Mulliken charges and bond populations. These non-observable quantities are 
useful for a chemical characterization of the system, and for comparing 
different crystalline environments of a given species (see for example Dovesi 
et al. (1984~)). 
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(b) Band structure. Even if HF band structures do not reproduce quantitatively 
the spectrum of one-electron excitations? they are usually topologically correct 
(see section 5 below); they may serve, for instance, for understanding the 
reactivity of crystal surfaces (Angonoa et al. 1984 a). 

(c) Charge density and structure factors. Charge density maps, especially 
difference maps, provide further insight into the characteristics of chemical 
bonds in crystals (see for example Causa et al. (1986 d)). The Fourier transform 
of the charge density is comparable with the set of experimental X-ray structure 
factors; the good quality of the calculated charge density can thus be verified 
(CausP et al. 1986 b). 

( d )  Electron momentum density (EMD), Compton profiles (CP), autocorrelation 
function. EMD data reveal important aspects of the electronic structure in 
solids (Dovesi et al. 1983 b, Causa et al. 1986d); CPs and autocorrelation 
functions are easily derived from this primary quantity, and may be compared 
with experiment: again, very good agreement is usually found (Causa et al. 
1985). 

The preceding analysis shows that sophisticated procedures for the HF treatment of 
crystalline solids are available. The range of application of a program like CRYSTAL is 
essentially limited by the number and type of the required basis functions. The present 
practicable upper bound is about one hundred AOs per unit cell in the most favourable 
case, that is, when AOs of small spatial extent may be used. Within such limits there are 
a number of interesting problems open to useful investigation. The quality of the results 
may compare favourably with those obtainable via DF approaches in many cases, such 
as for instance: 

- determination of the one-electron properties of ionic and covalent crystals with 
moderately complex unit cells not containing heavy atoms; 

- study of different crystal faces of these crystals by means of the thin-film model 
(an important class of problems here is the determination of equilibrium 
conformations; the availability of a technique for analytically calculating the 
energy gradient with respect to nuclear coordinates would be valuable for this 
purpose); 

- study of polymeric systems, modelled by isolated infinite chains or by ordered 
arrays of parallel chains (Dovesi et al. 1984~). 

5. Prospective work 
Much work is being devoted to a 'natural' extension of the capabilities of HF 

programs for crystals (refinement of algorithms, inclusion of analytic gradients, greater 
ease of use). Apart from that, a few directions of useful research activity may be 
indicated. 

5.1.  Pseudopotentid techniques 
Restricting the calculation to valence electrons impairs in principle the quality of 

the results. All-electron calculations provide direct information on core relaxation 
induced by the crystalline field (Dovesi et al. 1982 b), on the shift of core levels, etc., and 
may become necessary if one is interested in electronic and structural changes 
occurring in the system under very high pressures (Causa et al. 1986 a). On the other 
hand, getting rid of core electrons by the use of suitable pseudopotentials (PP) greatly 
increases the capabilities of the program when heavy atoms are considered. In the 
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present context, we are specially interested in PPs designed for H F  calculations, such as 
the ‘non-empirical’ PPs by the Toulouse group (Durand and Barthelat 1975, Barthelat 
et al. 1977), or the H F  ‘effective core potentials’ recently tabulated by Hay and Wadt 
(Hay and Wadt 1985 a, b, Wadt and Hay 1985). Until now, H F  PPs have only been 
tested in molecular calculations. They have been shown to provide accurate results 
comparable to all-electron calculations for a small fraction of the computational cost 
(the cost of a molecular calculation is roughly proportional to N 4 ,  N being the number 
of basis functions included in the actual computation). The use of PPs in LCAO-HF 
calculations for crystalline systems is not expected to provide cost-saving factors as 
favourable as for molecules. Due to the truncation schemes that can be adopted (see 
section 4), the number of two-electron integrals that need be calculated is roughly 
proportional to (N: + N,N:)  rather than to ( N ,  + Nv)4, N ,  and N ,  being the number of 
core and valence AOs, respectively. The advantage may still be considerable, especially 
in the SCF stage where matrices of order N ,  instead of ( N ,  + N,)  are to be constructed 
and manipulated. Modifying an all-electron crystalline H F  program that employs 
GTOs as primitive basis functions, for the inclusion of PPs of the kind mentioned 
above is relatively straightforward. No new types of integrals appear and only the 
expressions for Fock matrix elements and total energy must be changed. On the other 
hand, it is know that PPs perform best when the valence orbitals used for the molecular 
(or crystalline) calculation are precisely the pseudo-valence orbitals which have served 
for their generation. But as discussed in section 4, AOs which are suitable for describing 
the isolated atom, or the atom in an ordinary molecular environment, are usually not 
suited for crystalline calculations. Essentially, less diffuse AOs must be used, and their 
definition is specific for each crystalline environment; the question is open whether 
standard PP expressions can safely be used in spite of this problem. 

5.2. Correlation corrections 
We have shown that the usefulness of HF approaches could be greatly increased by 

the introduction of correlation corrections. Extending to HF  calculations for solids the 
methods and ideas developed for this purpose in molecular studies (see for instance 
Wilson (1984)) is not an easy task. In particular, configuration interaction techniques 
are not directly transferable to infinite systems because they do not satisfy the 
requirement of ‘size-consistency’, that is, the corresponding expression for the 
correlation energy is not asymptotically proportional to the number N of electrons in 
the system. A number of schemes are currently explored, and it is not yet clear which of 
them is preferable, also because of the fact that good HF wavefunctions for crystals 
have only recently become available. 

The most natural way to deal with the correlation problem for solids is the 
intrinsically size-consistent Green’s function method (Hedin and Lundqvist 1969). 
Knowledge of the one-electron Green’s function (or equivalently, of the self-energy 
kernel) provides the correct ground-state energy of the system, its one-particle 
excitation spectrum (band structure), and its first-order density matrix. In principle, it is 
well known how to express the self-energy in terms of H F  eigenvalues and eigenvectors, 
for example as a diagrammatic series. Methods for exactly treating the series to finite 
order and approximately to infinite order for molecular applications have been 
reviewed by von Niessen et al. (1984). When trying to apply these methods to crystals, 
computational difficulties arise. First, one must transform the :wo-electron integrals 
from an A 0  to a CO representation, which may be very cumberscrne; second, when 
calculating the various diagrammatic contributions to the self-energy, multiple 
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summations over the CO indices must be performed, which entails the need for multiple 
integration over the continuous k index (three such integrations for second-order 
diagrams, four in third-order, etc). For both problems, the availability of simple 
techniques for k space integrations seems critically important. Liegener (1985) has 
provided an example of rigorous application of such techniques, by treating to third 
order in the diagrammatic series the infinite alternating chain of hydrogen atoms. 
These kinds of treatment are closely related to the Marller-Plesset perturbative scheme, 
which considers the full hamiltonian as a perturbed HF  hamiltonian. Suhai (1983) has 
recently demonstrated the usefulness of this scheme in one-dimensional periodic 
calculations, by correcting the H F  band structure of trans-polyacetylene through the 
inclusion of all significant matrix elements to second order. 

It is more customary in solid-state physics to adopt approximate expressions for the 
self-energy, not based on a truncation of the infinite perturbative series but on 
physically sound assumptions; the H F  wavefunction is there used essentially for 
defining the one-electron density matrix and derived quantities. Among these kinds of 
approximation, we can mention the so called ‘Coulomb hole plus screened exchange 
(COHSEX)’ approximation which has found widespread use for correcting the H F  
band structure of semiconductors and insulators (Lipari and Fowler 1970, Brener 
1975 a, b, Strinati et al. 1982, Baroni et al. 1985). It is interesting to note that this 
correction does not alter in any essential way the topology of the H F  band structure, its 
main effects being a reduction of valence bandwidths, and a shift of conduction bands 
downwards, and of valence bands upwards, toward the Fermi level. 

Another size-consistent scheme for the treatment of correlation effects which is 
being introduced in solid-state theory is the coupled cluster approximation (see for 
instance Paldus et al. (1 984)). A similar approach, relying on the use of appropriately 
chosen local functions to which the pair-excitation operators are applied, has been 
followed by Fulde and co-workers for treating electron correlations in insulators and 
semiconductors (Kiel et al. 1982, Horsch et al. 1983, 1984, Borrmann and Fulde 1985). 

For all those problems where the main parameter of interest is the ground-state 
energy E,, a simple means for evaluating the correlation energy would be valuable. The 
HF  one-electron density matrix is known to be a good approximation to the exact one, 
except in some critical cases. Density functionals developed in the framework of D F  
theories can therefore be utilized with reference to H F  densities. The correlation-only 
functional proposed by Perdew and Yue (Perdew and Yue 1986, Perdew 1986) and 
obtained from a generalized gradient expansion appears particularly promising in this 
respect. Its application to atoms and ions, using H F  densities as input data, gives 
impressively good results from hydrogen to argon. The nonlocal D F  formulated by 
Colle and Slavetti (1975,1979,1983) for evaluating the correlation energy of molecular 
systems has many features in common with the Perdew functional, but has been derived 
in a different theoretical framework, that is, starting from an ansatz concerning the 
expression of the correlated wavefunction. One of its attractive features is that it is 
intrinsically free from the self-interaction term, that is, it provides no correlation energy 
for one-electron systems. Preliminary tests of applications of the Colle-Salvetti 
functional in periodic systems are being performed; they provide generally good results 
except for metallic systems. 

5.3. Embedding techniques 
Having solved the H F  problem for a perfect crystal, it would be worthwhile to 

exploit the related information in the study of point-defect problems. One could be 
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interested for example in characterizing a chemical impurity or a vacancy in an 
otherwise perfect crystal by determining the energy of formation of the defect, the 
position of the impurity levels (if any), the spatial extent of the associated states; or else, 
one could want to investigate the reactivity properties of a certain crystal face (the 
reference ‘perfect crystal’ is here a thin periodic film), by calculating the equilibrium 
geometries and chemisorption energies of different adspecies. Since the perturbation is 
quite localized in these cases, the actual calculation may be restricted to a small region 
C surrounding the defect, by imposing the local solution to match with the extended 
crystal states at the boundary of C. Embedding techniques provide the means to do that 
(for a review up to 1978 see Pantelides (1978)). By far the most widely used approach is 
the Green’s function technique originally proposed by Koster and Slater (1954). Here C 
is chosen to coincide with the region where the perturbation V is different from zero, 
and the Green matrix Gc in that region is obtained in terms of the Green matrix GL of 
the host crystal by solving the Dyson equation. Other interesting approaches have been 
proposed; for instance, Inglesfield (Inglesfield 1981, Baraff and Schliiter 1986) defines 
an embedding potential, different from zero only at the surface of the defect region, 
which ensures the regular behaviour of the wavefunction across the boundary; Whitten 
(Whitten and Pakkanen 1980, Cremaschi and Whitten 1981) suggests exploiting the 
SCF solution of the host crystal (or of a large cluster that mimics the host crystal) for 
obtaining, through a unitary transformation, localized functions to be used for an 
accurate calculation in the defect region; Pisani (Pisani 1978, 1986, Pisani et al. 1979) 
shows how to correct the Green function of the isolated cluster by means of suitable 
energy-dependent coupling matrices that can be obtained from the host crystal 
solution. 

The majority of the embedding calculations use relatively crude models for 
describing the host crystal and the defect region. In recent years, however, the trend has 
been toward more and more accurate hamiltonians and adequate basis sets. The time is 
ripe for a fully self-consistent HF treatment of simple defects in crystals by one or 
another of the embedding approaches just mentioned. Such,a level of description is 
probably sufficient to reveal all the important chemical features of the defect problem; 
the correlation contribution to the defect formation energy could be estimated a 
posteriori by using, for instance, the Colle and Salvetti (1983) density functional. 
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